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Abstract—A comprehensive numerical study is made of the velocity and convective heat transfer charac-
teristics of developing laminar flow in a 90° curved square duct. Straight inlet and outlet tangents are
attached to the duct. The fully elliptic, three-dimensional, steady, incompressible Navier-Stokes equations
are solved numerically over wide ranges of Reynolds number Re (and corresponding Dean number). A
body-fitted coordinate system is utilized. Two thermal boundary conditions at the bend were adopted : a
constant wall temperature condition, and a constant wall heat flux condition. The ¢laborate numerical
results are consistent with the available flow field data. The details of the temperature field as well as the
Nusselt number in the curved region are depicted. The influence of Re on local heat transfer in various
parts of flow field is scrutinized. The impact of the thermal boundary condition at the bend is examined.
In the vicinity of the entrance of the curved region, heat transfer is higher on the inner wall due to the
presence of Jocal accelerating flows near the inner wall. However, at further downstream, heat transfer is
higher on the outer wall, since the maximum of the mainstream is shifted toward the outer and side walls
by the action of centrifugal force. As the Reynolds number increases, a region of reverse flow appears in
the corner area between the outer and side walls near the inlet of the bend. Heat transfer is reduced in this
region of reverse flow. The present computational results clearly illustrate the variations of the Nusselt
numbers, both in the peripheral and streamwise directions.

1. INTRODUCTION

CONSIDERABLE interest has recently been shown in
three-dimensional flow and heat transfer charac-
teristics of fluids passing through a strongly curved
duct. This has been motivated by the need to acquire
an improved understanding of transport processes at
work. Strongly curved ducts, in particular, with
square cross-section, are widely used in various types
of heat-exchanging industrial devices and high-tech
electronic systems. One prominent feature is the gen-
eration of the secondary flow, which mainly resuits
from the dynamic interplays of pressure gradient, cen-
trifugal force and viscous effects. Owing to these sec-
ondary flows, convective transports are generally
more effective in a curved duct than in a straight
duct of comparable size. However, substantial local
variations of heat transfer are also noted in a curved
duct. This warrants a thorough examination of the
flow and heat transfer properties, local as well as
global, in order to design and operate efficiently these
sophisticated modern technological systems.

The importance of accurate analyses of three-
dimensional flow fields in a curved duct has well been
recognized ; however, comprehensive and validated
information on heat transfer characteristics under
developing flow conditions has been relatively scanty.

t Author to whom correspondence should be addressed.

Most of the existing flow data have been obtained for
fully developed flows [1, 2]. The primary concern of
these investigations has been with the structure of
secondary flow. Reference [3] presented experimental
data on the velocity distributions for developing flows
in a 90° curved square duct by using a laser Doppler
velocimeter. A parallel computation was also made
in ref. [3] by use of a rather coarse grid network.
Complementary flow field measurements were
reported later by ref. [4].

Prior studies available in the literature on heat
transfer in a curved duct mostly dealt with the cases
of fully-developed heat transfer under fully-developed
flow conditions [5, 6] or developing heat transfer
under fully-developed flow conditions {7]. Only a few
experimental investigations on developing heat trans-
fer in developing curved duct flow were documented,
and they were in the turbulent flow regime, e.g. ref.
[8]. The scarcity of reliable heat transfer data in devel-
oping flows in a curved duct is conspicuous in the
engineering literature.

Numerical simulations of developing curved duct
flows and associated heat transfer have been a for-
midable undertaking. Extreme complexities are
involved in computing three-dimensional flows over
broad ranges of relevant parameters. Consequently,
preceding numerical efforts were carried out under
restrictive and simplifying assumptions in solving the
governing Navier-Stokes equations [9, 10]. However,
the deficiencies and potentially erroneous results
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NOMENCLATURE
A" link coefficient for the u-momentum S$?  source term for the general scalar ¢
equation S source term for the v-momentum
A link coefficient for the v-momentum equation
equation S* source term for the v-momentum
A*  link coefficient for the w-momentum equation
equation S*  source term for the w-momentum
C_‘p pressure coefficient ((P* - Py)/(puj/2)) equation
C, average pressure coefficient over the duct T nondimensional temperature
cross-section T*  dimensional temperature
C,. ~ average pressure coefficient at the duct T, nondimensional bulk temperature

wall .
D hydraulic diameter of the duct
De  Dean number (Re(D/2r)"?)
L width of wall
L, peripheral length of the duct

n normal direction to the wall

Nu  local Nusselt number at the wall
(hD[x)

Nu  plane-averaged Nusselt number at the
wall

Nu, peripheraily-averaged Nusselt number
at the wali

P nondimensional pressure

P*  dimensional pressure

P guessed pressure

P’ correction pressure

P,  dimensional duct inlet pressure

Pr Prandtl number (v/a)

q heat flux

R curvature ratio (ry/D)

o dimensional mean radius of the curved
region

Re Reynolds number (u,D/v)

S dimensional total surface area of the

curved region of the duct

T,  dimensional duct inlet temperature
T,  dimensional wall temperature

Uy dimensional average velocity at the duct
inlet
u, v, w mnondimensional velocity components

w*, v*, w* dimensional velocity components
i, ¢, w guessed velocity components
W, v, w  correction velocity components

U, V, W contravariant velocity

components

x, ¥,z nondimensional cartesian
coordinates

X*, y* z*  dimensional cartesian
coordinates.

Greek symbols

a thermal diffusivity

I'*  effective diffusion coefficient

0 curve angle

K thermal conductivity of the fluid

¥ kinematic viscosity

&, n, ¢ curvilinear coordinates

P density

¢ dependent variable of general transport
equation.

obtained by using simplified versions of the governing
equations, such as parabolic or semi-parabolic treat-
ments, for duct flows with strong curvature have been
explored [11]. Recently, publications illuminating the
computational results of flow field at selected Reyn-
olds numbers, secured by using elliptic three-dimen-
sional formulations, indicated generally satisfactory
agreement with the flow measurements {11, 12]. These
previous endeavors substantially enlarged our rudi-
mentary knowledge of global characteristics of flow
and heat transfer in strongly-curved ducts.

The purpose of the present study is to provide an
enhanced understanding of local heat transfer prop-
erties in the developing region of a curved duct. The
subject is of particular importance at higher Reynolds
numbers and with stronger curvature ; the possibility
of the existence of reversed flow regions near the inlet
of the curved section leads to a significant reduction
of local convective heat transfer in these zones. The

main thrust of the present work is placed on carrying
out extensive and in-depth numerical calculations of
developing convective flow and heat transfer over a
wide range of Reynolds numbers. The unapproxi-
mated, elliptic, three-dimensional steady incom-
pressible Navier—Stokes equations are solved numeri-
cally. The computational results will provide a
valuable check to verify the previous numerical pre-
dictions which were obtained under several restrictive
approximations, such as parabolic or semi-parabolic
formulations.

In the present paper, it is intended to extend the
numerical simulations in a systematic way to disclose
the explicit dependence of the results on the Reynolds
number. The local thermal field data in the developing
flow region have not been given in sufficient detail
in the literature. References [11], [13] illustrated
numerical results for one value of the Reynolds num-
ber using a constant wall temperature boundary con-
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dition at the bend. One objective of the present study
is to comprehend the change in flow character under
two different thermal boundary conditions, i.e. a con-
stant wall temperature condition and a constant wall
heat flux condition. Owing to the greatly expanded
computing resources, the computational mesh net-
work is appreciably finer in the present paper than
those of the preceding numerical studies 11, 13]. It is
also worth mentioning that the temperature field data
of ref. {11] were acquired with the inlet and outlet
tangents excluded. This may introduce some un-
specified numerical errors. It is of interest to point
out another potentially significant improvement in
numerical computational methodology of the present
study. In the prior investigations {3, 11, 13}, three
different coordinate systems were used to handie sep-
arately the straight ducts and the bend region.
However, as observed by Kajishima er /. [14], such
numerical procedures may produce numerical errors
due to the discontinuity at the conjunction zones of
two different adjoining coordinate systems. In an
effort to remedy such possible localized numerical
inconsistencies, a continuous body-fitted coordinate
system Is utilized in the present study. These will pre-
sumably increase the accuracy and reliability of the
present numerical results.

The numerical results are processed to describe the
three-dimensional features of flow and heat transfer
inside of and on the duct wall in the developing flow
region. The principal dynamic ingredients peculiar to
developing three-dimensional flow and heat transfer
will be identified and plausible explanations will be
rendered. Empbhasis is given to the axial variations of
the average Nusselt number as well as to the peripheral
variations of the local Nusselt number on the curved
duct wall. These issues have not been explicitly
addressed in the earlier investigations.

In connections with the presence of reversed flow
zones, the necessity of using the elliptic formulation
is stressed. The present study is supportive of the
assertion that, at high Reynolds numbers, a reversed
flow zone appears in the corner of the outer and side
walls near the inlet of the curved region [3] ; the associ-
ated heat transfer decreases measurably in this zone.
When the thermal boundary condition is specified by
a constant wall heat flux, the numerical results indicate
substantial changes in local temperature in this corner
area.

2. THE PROBLEM FORMULATION

The governing Navier-Stokes equations, expressed
in nondimensionalized tensor form, are:

g
= w)=0 (1a)
é oP 1 ¢ {0
ax, ) = oy, Y Re o, <6x,) (I1b)
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Oy Lo ()
0x; “ )_Re}ir dx; \Ox; (Ic)

wherei, j=1,2,3,

Re = u,Djv, Pr=vja.

In the above equations, (¥,, u, and ;) are the velocity
components in the x, y and z directions (expressed
later as u, v and w, respectively) ; u, the dimensional
average velocity at the duct entrance ; D the hydraulic
diameter of the duct; T the temperature; Pr the
Prandtl number; Re the Reynolds number. In the
present problem formulation, all the physical prop-
erties are taken to be constant.

The nondimensionalization is based on the fol-
lowing reference values for the respective dimensional
physical quantities (starred) :

x=x*D,  y=y*D, z=z¥D, u=u*luy,

v=0*uy, w=wuy, P=P*(pu;), (2)

T=T*-T)/(T,—To)

(in the case of constant wall temperature condition),
or (3a)
T=(T*~T,){(g.D/x)

(in the case of constant wall heat flux condition)
(3b)

where T, the dimensional duct inlet temperature, 7,
the dimensional wall temperature in the curved region
for the case of (3a), q,, the dimensional wall heat flux
in the curved region, and « the thermal conductivity
of the fluid. Figure 1 shows a schematic of flow con-
figuration.

Equations (1b) and (lc) can be written in terms

exit—
inner wall—;
symmetry.

plane l =
! g -
: ©
t = =
m’ : » ™
z, ¢ \
outer wall
= 10 D ~
inlet= - © ‘heated
region

==

FiG. 1. Duct geometry and coordinate system.
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of a single general equation for an arbitrary scalar

dependent variable ¢ as
0
(F‘/’ ﬁ?) +5¢ (4)
CX

2
o p) = -

X,

where I'? is the effective diffusion coefficient, and S*
the source term.

A general three-dimensional curvilinear coordinate
system is introduced in solving the full elliptic forms
of the Navier-Stokes equation. Let (£, 5, {) be defined
as

{=1{(x2), (5
then, equation (4) is transformed into
(Ug): + V), + (W},

= (Mo o)+ TPanh,), + (M) +S (6)

where,

¢=E&(xp.2), n=nlxp2),

U= ut+iv+iw, VEngutyot+nw,
We={u+{v+{w,
S = (C28,d): +(T?B3¢): + (T8 4e),
+(T?B20), + (T Bygpe): +(T7Br$,): + 8¢
and
ap = (EHEHED, o = O+ +uld),
ay = (3 4+ +).
B = En+En, +Em),
B = lo+nl +n.0),
By= (&L HEL)

é.\’ = J(ynzl - V( Zr;)! é:v\* = J(X:Zn quzg“)!

é: = J(xr] Yo —X; yry)

Hy = J(Xezp — X722 ),

By = J(}»‘CZE —Y: Z;)w
0. = J(xg e —Xe )

Co=J(ez,—yez,), & =0z ~X:2p),

C: = J(X‘: Yy =Xy )"g)
J= !J!{x;f (ynzi —}’;Z”) +y§ (X«ZZYJ _an\f)
+z (% p =X )}

Here U, V and W are contravariant velocities, and J
is the Jacobian of the coordinate transformation.

Now the associated boundary conditions will be
described. The velocity boundary conditions at the
duct wall are

u=0, v=0 w=0 (7a)

For the temperature boundary conditions at the duct
wall, only the curved region is heated and the straight
fore- and after-tangents are assumed adiabatic. Thus,
the thermal boundary condition for the straight tan-
gents is

J. H. CHUNG and J. M. HYUN

0T/on = 0 (adiabatic wall), {7b)

and for the curved region
W = 1

(in the case of constant wall temperature condition)
{7c)

or
8T/on = 0.1(Re D*/S,)

(in the case of constant wall heat flux condition)
(7d)

where n denotes the direction normal to duct wall,
and S, the dimensional total surface area of the curved
region of the duct. In the process of deriving (7d), it
is noted that the nondimensionalization of tem-
perature is in accordance with (3b) (see Akiyama et
al. {15]). It should also be mentioned that Pr = 1.0,
and the numerical value of the rise of the non-
dimensional bulk temperature between the inlet and
outlet was set to be 0.2. This particular value of 0.2
was selected in order to facilitate quantitative com-
parisons of the present results with the numerical data
of Akiyama (see the results of run number (1) of
Akiyama [15], for Re = 1000, R =2, De = 500, Pr =
0.71). Due to the nondimensionalization schemes
adopted in the present paper, the values of the tem-
peratures in the present results are approximately 10
times those of the nondimensional temperatuares of
ref. {15].

Due to symmetry of the duct geometry, only one
half of the duct passage is included in the numerical
calculation. The conditions on the duct symmetry
plane are

2

N
ou
Oz

/2 J

~

w oT
=0, =—=0, ——=0

z 0z

w =0, (7e)

Oy

The duct inlet velocity was specified as that of fully
developed laminar flow in a straight square duct flow,
obtainable from the analytic solution [16]. The vel-
ocity is normalized by the average inflow velocity u,.
In order to minimize the effect of the inlet and exit
boundary conditions on the flow fields in the curved
region, the inlet and exit planes are located at
sufficiently large distances from the curved region;
the inlet plane is located at 10 hydraulic diameters
upstream of the curved section, and the exit boundary
condition is given at 30 hydraulic diameters down-
strearn, as shown in.Fig. 1. The lengths of inlet and
outlet tangents taken in this study are larger than
those taken by other numerical studies [3, 10, 12].

The inlet boundary conditions, imposed at 10D
upstream of the curved region, are ¥ = the series solu-
tion of fully developed laminar flow in a straight
square duct (Ward-Smith [16])

v=0, w=0, T=0. (71)

The exit boundary conditions, enforced at 30D
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downstream of the curved region, are given by the
Neumann-type conditions [17]

oT

du dv ow
i 0, i g, (7g)

The main task now is to secure a suitable numerical
solution technique for the system of partial differential
equations (6) in the transformed domain, described
by one scalar variable ¢ with the associated boundary
conditions {(7a)—(7g).

3. NUMERICAL METHOD

The governing equations were solved by using the
SIMPLE-C algorithm, which had been documented
in refs. [18, 19]. This algorithm upgraded the pressure
correction technique of the original SIMPLE algor-
ithm [20]. A hybrid scheme suggested by ref. [20]
has been employed to represent the convection and
diffusion terms. Iterations were required to attain con-
verged solutions with a prescribed accuracy level (10~°
in the present study). The spatial mesh points were
(103 x 25 x 15) in the (&, 5, {) computational domain.
The mesh was stretched to cluster the grid points near
the duct walls. All computations were implemented
on a CRAY-2S supercomputer.

Equation (6) is integrated over the control volume
d¢ dn d¢, and it can be cast into a general form of
finite difference formulation

qubp = Ac¢e+Aw¢w+An¢n +As¢s
+ A+ Ay +Se  (3)

where,
Ay = A+ A, + A+ A+ A+ 4,

and 4., 4., 4,, A,, 4, 4, are the link coefficients,
and S, the discretized source term. From equations
{4) and (8), the finite difference forms of momentum
equations can be written as

Asg, =Y A4+ S"~P,

i

Anb, =Y A%,+5" P,
i

A, = T AW +S*—P,. ©
J

Using properly guessed values of pressure and vel-
ocities, approximate velocity components of 4, ¢ and
W can be obtained from equation (9). To satisfy the
continuity equation, the pressure and velocities are
corrected by

P=F+P, W= w4 w.

(10

The velocity correction equations are obtained using
equations (9) and (10):

u=t+u, v=70+v,

2541
A, = Y AU, + 8 — P,
J
A, = Y AW+ 5 =P,
7
Auw, = Y AW, + 5% — P, an
i

In line with the SIMPLE-C algorithm, the above vel-
ocity correction equations (11) become

W, = D'P’,, t,=D"P,, w)=D"P. )
(12]

where,

D= —1/’(&,— ;A_?), D = —1/<AP—— ;Aﬁf),

oref(ae30).

Introducing equations (12) into the continuity equa-
tion (1a), the Poisson equation is obtained :

(D*P)A(DP), +(D"P)), = i +0, +¥.. (13)

After solving equation (13), the corrected velocities
and pressure can be found from equations (10) and
(12), and these corrected velocities and pressure can
be used again as the initial guesses for equation (9).
The same procedure is repeated until converged solu-
tions of velocities and pressure are achieved.

The three momentum equations and energy equa-
tion are uncoupled in the forced convection heat
transfer calculation; therefore, only after the fully
converged solutions for velocity fields are in place, the
thermal fields are computed.

4. RESULTS AND DISCUSSION

Table 1 summarizes the parameter values for the
runs in the present computations. In order to sys-
tematically assess the effect of the Reynolds number,
five different values of Re were chosen. As stipulated
in equations (3a) and (3b), for each run, two cases of
the thermal boundary conditions at the duct wall were
used. The Prandtl number was set Pr = 1.0. The case
of Re = 790 serves as a benchmark test ; the numerical
results can be explicitly checked against the existing
data in the literature [3, 4, 10-13] which were made
for this particular value of Re.

In the ensuing sections, eminent features of flow and

Table 1. Parameter values for the
computations

Re R De

50 23 23

500 2.3 233

790 2.3 368

4.6 260

1000 2.3 466

2000 2.3 933
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FiG. 2. Development of main stream velocity {Re = 790,
R = 2.3}, —— present results, O experiment {ref. [3}]). (a)
Symmetry plane; (b) plane at 0.25D from the side wall.

heat transfer will be discussed for two representative
cases, Re = 50 and Re = 790 ; these two characterize
the flow properties in the low- and high-Reynolds
number regimes.

J. H. CaunG and J. M. Hyun

4.1. Flow and pressure drop

We shall first briefly review the velocity patterns.
The flow structures in a curved duct at a relatively
high Re have been described previously {3, 4, 10, 12]:
we shall recapitulate the highlights only.

Figure 2 exemplifies the developing mainstream
flows in the curved region at Re = 790. The main-
stream velocity becomes larger near the outer wall as
the flow moves downstream. The variations in the z-
direction, which denote the three-dimensionality, are
also captured well by the present computations. Fig-
ure 2 is shown to appraise the reliability and accuracy
of the present numerical simulations by repeating par-
allel computations to the experimental measurements
of ref. [3]; the agreement, as demonstrated in Fig. 2,
is satisfactory.

Figure 3 exhibits both the mainstream and sec-
ondary flows for a low-Re regime (Fig. 3(a) for
Re = 50} and for a high-Re regime (Fig. 3{b) for
Re = 790). As ascertained, independent flow data are
available [3, 4] for Re =790, and the general flow
patterns based on the present numerical results are
consistent with these preceding observations. It is
noted that, in the high- Re regime, a small area of flow
reversal is present in the corner between the outer and
side walls near the entrance region of the curved duct
(see Fig. 3(b) at § = 0% and € = 30°). This is duc to
an appreciable adverse pressure gradient arising from

I il

[RERRA

reversed
flow region

reversed
flow region

Fi6. 3. Iso-velocity lines of mainstream (left half plane) and secondary flow patterns (right half plane).
The values of iso-velocity contour lines, are from outer to inner wall, 0.2,04,0.6,08,1.0, 1.2, 1.4, 1.6 and
18 (8} Re=50,R=23;{(b) Re =790, R =213,
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substantial curvature effects. Further details of the
mainstream flow near the curved walls are depicted in
Fig. 4. As pointed out in Fig. 3(b), the presence of a
reverse flow zone in the vicinity of the corner between
the outer and side walls in the range 0° < 8 < 30° is
discernible in Fig. 4(b). The direction of the flow near
the side wall is consistent with the flow visualization
of ref. [4]. However, as manifested in Figs. 3(a) and
4(a), when Re is low, the flow reversal is not con-

%,
/// 7 //
.- 1
=

=ZZ2 7% ",
= = - 2, a
— : -~ 7 7 42
- —~ 7,
— - Pd 7 %
e %
- =z Zz =z
do 50 1

—_
[am}
—
o

1

center line

07 6° 12" 18° 28 30° 36° 42°
(B) side wall

NN

[RERT

7

— e

[eo PRTTIN
o

—_ N
(-]

s
36° 42°
wall

F1G. 4. Mainstream velocity vectors. (A) On the plane located

at 0.0136D from the side wall; (B) on the plane located at

0.0147D from the outer wall. (a) Re =50, R=23; (b)
Re =790, R = 2.3.
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spicuous ; in the low-Re regime, the adverse pressure
gradient is not sufficient to cause the reverse flow. The
observation of ref. [3] had suggested that the reverse
flow zone exists in a duct when the Dean number
De > 125. The elaborate numerical computational
results of this study are qualitatively supportive of this
experimental finding. Figures 3 and 4 clearly recapture
the well-documented general flow character; at high
Re, the secondary flows are more vigorous, and the
position of the maximum mainstream velocity moves
toward the outer and side walls. The behavior of
secondary flows at 6 = 0° merits some mention. The
present numerical results indicate that at 8 = 0°, the
secondary flows are predominantly directed toward
the inner wall in both Figs. 3(a) and (b). This is in
conformity with the recent experimental and numeri-
cal studies of refs. [14, 21]. This may be attributed to
the apparent imbalance of radial pressure gradient
and the centrifugal force. Near the inlet section of
the curved duct, a positive radial pressure gradient
already exists, but the centrifugal force, which drives
radially outward flow, has not built up yet. The
intensification of the secondary flow, as the curve
angle 0 increases, is discernible in Figs. 3(a) and (b).

The pressure distributions, as depicted by average
pressure coefficients CT,, are plotted in Fig. 5. In Fig.
5 the cross-sectional average pressure coefficient, C,,
at a given curve angle 0, is defined by

C, = JCP dA/JdA,

where d4 is the infinitesimal cross-sectional area per-
pendicular to the axial direction. Also, at the inner or
outer wall, the average pressure coefficient, C, , at a
given curve angle 0, is defined by

1
C, = ZJCP dL,

where L denotes the local wall width concerned. In
general, pressure is high (low) near the outer (inner)
wall, a well-known phenomenon in a curved duct.
However, this radial pressure gradient varies sub-
stantially with the curve angle. It is noticeable that in
the high-Re regime (e.g. see Fig. 5(b) at Re = 790),
the unfavorable pressure gradient in the mainstream
direction is substantial on the outer wall between
0 = 0° and 0 = 45°. This gives rise to the reversal
of mainstream flow between 6 =~ 0° and 0 = 35°, as
demonstrated in Figs. 3(b) and 4(b). The computed
result of cross-sectional average pressure coefficient,
C-p, in Fig. 5(b) is in good agreement with the data of
ref. [3].

4.2. Heat transfer

We now turn to the thermal field and associated
heat transfer. As remarked earlier, the developing heat
transfer in a duct with strong curvature has not been
addressed in sufficient detail in the literature. It is
noted that ref. [11] produced temperature distri-
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butions by performing three-dimensional elliptic type
calculations using a rather coarse mesh. These com-
putations were about a single Reynolds number
Re = 790, and the constant wall temperature con-
dition was prescribed. A careful literature survey has
revealed no other apparent published information on
this particular aspect of heat transfer problems.

First, axial variations of the thermal fields are scru-
tinized. It is advantageous to define a bulk tem-
perature Ty, inside the duct as

T, = J‘UTdA/JUdA,

where U is the axial velocity, d4 the infinitesimal cross-
sectional area perpendicular to the axial direction.
In the present problem formulation, only the curved
portion of the duct is exposed to external thermal
forcing (e.g. constant wall temperature or constant
heat flux through the wall), and the straight tangents
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are insulated. Consequently, it follows that the vari-
ation in T, is expected only in the curved portion.

Figure 6 illustrates the axial variations of 7,. Under
the condition of constant heat flux at the wall, the
variation of T, is approximately linear in the axial
direction, as can be easily anticipated. However, for
the case of constant wall temperature condition at
the wall, some comments are in order. Figure 6(c)
indicates that, in the low-Re regime (Re = 50), the
rate of increase of T, is rapid near and immediately
after the inlet of the curved duct. In this low-Re
regime, the influence of the secondary flow is meager
(see Fig. 3(a)); the heat transport characteristics are
qualitatively akin to those inside a straight duct. On
the other hand, in the high-Re regime (see Fig. 6(d) for
Re = 790), the rate of change of T, is fairly uniform
throughout the entire curved portion of the duct. In
this case, the secondary flow is intense, and the overall
heat transfer is effectuated by axial as well as sec-
ondary flow. It is worth noting in Fig. 6 that, although
only the curved portion is exposed to external thermal
forcings, T, starts to be affected a little ahead of the
curved inlet {(§ = 0°). This manifests the elliptic nature
of the present computations. An analogous feature
was discernible in the plots of the pressure fields, as
shown in Fig. 5. The computational results of ref. [15]
about a curved pipe disclosed a similar trend in the
axial variation of 7.

The three-dimensional structures of thermal fields
in the developing region are exhibited in Fig. 7. It
is obvious that the isotherm contours in the cross-
sectional views resemble the iso-velocity contours of
the mainstream, as depicted in Fig. 3. This was
observed also previously by Yee et al. [11]. In particu-
lar, in the high-Re regime (see Figs. 7(b) and (d) for
Re = 790), the isotherm contours are crowded near
the outer and side walls, especially at large values of
0); these are characteristic of the mainstream velocity
contours. As asserted earlier, the impact of secondary
flow on the convective transport is substantial, and,
consequently, the maximum of the axial flow tends to
be shifted toward the outer and side walls. At very
small values of 6, the axial flow is larger near the inner
wall than the outer wall; therefore, convective heat
transfer is more effective near the inner wall region.
However, as 0 increases, the axial flow intensifies near
the outer wall owing to the centrifugal force generated
in the curved passage. This brings about enhanced
convective heat transfer activities near the outer wall
region.

An interesting feature of the thermal field pattern
may be seen near the corner of the outer and side
walls in the high-Re regime near 0 = 07 (see Fig. 7(b)).
Notice that the local temperature near this corner
reaches a high value, although the bulk temperature
at the inlet of the curved duct (0 = 0°) is very low.
The occurrence of a localized area of high temperature
may be identified as an extreme reduction of con-
vective heat transport in this region. This is attributed
to the presence of the zone of flow reversal, which
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Fig. 7. Plots of isotherms in the cross-sectional planes. (a)Re = 50, R = 2.3; constant wall heat flux

boundary condition. (b) Re = 790, R = 2.3, constant wall heat flux boundary condition. (c) Re = 50,

R =2.3; constant wall temperature boundary condition. The values of isotherm contours, are from outer

to inner walls, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1. (d) Re = 790, R = 2.3 ; constant wall temperature
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was discussed earlier (see Figs. 3(b) and 4(b)). The
numerical study of ref. [15] for a 90° curved pipe
also disclosed a qualitatively similar trend of having a
localized high-temperature region near the outer wall
in the inlet plane, Due to the geometrical difference
between ref. [15] and the present study, no direct and
more quantitative comparisons are tenable between
these two sets of results.

The constant-flux thermal boundary condition
imposed on the duct wall may be viewed as an
approximation to certain realistic industrial systems.
In these situations, accurate determination of the duct
surface temperature distribution is a meaningful task.
Examples may be found in various types of precision
heat exchangers, which include a large number of
curved ducts. Figure 8 exhibits isotherm contour plots
on the surfaces of the duct. At a given cross-sectional
plane, the local temperature is, in general, higher near
the corner regions than in the interior; convective
activities are weaker in the corner regions due to the
existence of slower-moving particles. The presence or
absence of the corner region makes the principal
difference between the case of a curved duct and a
curved pipe [15]. As succinctly demonstrated in Fig.
8(a), in the low- Re regime, the region of highest tem-
perature is located near the corner of the inner and
side walls at a small distance prior to & = 90°. The

axial velocity is minimum at this location. On the
contrary, in the high-Re regime (see Fig. 8(b)), the
highest temperature is found near the corner of the
outer and side walls somewhere between § = 0° and
0 =15°, As stressed previously, this region cor-
responds to the zone of flow reversal (see Figs. 3(b)
and 4(b)). It is also of interest to observe in Fig.
&(b) that the overall temperature distributions in the
corner areas between the inner and side walls tend to
be high. Figure 8(b) also shows a region of relatively
high temperatures in the vicinity of the symmetry line
on the inner wall between 8 & 40° and 6 = 90°. The
presence of this region signifies the role of secondary
flow, which scoops heat from the outer wall region
and transports it to near the inner wall in the middle
and upper parts of the curved duct (8 ~40° to
0 ~ 90°).

The Nusselt number is a key parameter which can
be acquired by analyzing the computed thermal field.
For the present three-dimensional flow data, it is
advantageous to introduce suitably-averaged Nusselt
numbers, The peripherally-averaged Nusselt number,
mp, at a given curve angle 0, is defined as

1 1 T
B 1:’ f(Tw - Tb) (—é’?)wn!! de,

in which L, represents the peripheral length and » the

Ny =
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condition. (b} Re = 790, R = 2.3; constant wall heat flux boundary condition. {c) Re =150, R = 2.3,
constant wall temperature boundary condition. (d} Re =790, R =2.3; constant wall temperature

boundary

direction normal to the duct wall. In a similar manner,
the plane-averaged Nusselt number, Nu, at a given
curve angle 0, for the component wall of the duct, i.e.,
the inner, outer, or side wall, is defined as

)G e

where L denotes the local width of the wall concerned.

Figure 9 illustrates the above-defined Nusselt num-
bers. In the first, when the Reynolds number is low
(sce Figs. 9(a) and (c)), the secondary flow is weak
and convective heat transfer is dominated by the axial
flow. On the surface of outer wall, the Nusselt number
decreases mildly with axial distance from the duct
inlet (6 = 0°) to intermediate values of the curve angle
(0 = 20-30°). After passing through a minimum, Nu
increases gradually in the downstream areas up to the
duct exit (8 = 90°). The Nusselt number variations on
the surfaces of other walls are similar to those of a
straight duct flow. On the other hand, in the high-
Re regime (see Figs. 9(b) and (d)), a substantially
different picture emerges. The secondary flows and
the distortion of the axial fiows toward outer and side
walls play a significant role, and the heat transfer
properties show considerable axial variations accord-
ingly. In the inlet region of the curved duct, the
peripherally-averaged Nusselt number, NZ, initially
decreases with the axial distance until reaching a mini-
mum around § = 15°. In this inlet region, the sec-

Nuy= —

i
L

condition.

ondary flow has not developed vet to a sufficient
strength. At intermediate and large curve angles
(6 = 15°), secondary flows are substantial in magni-
tude, and, as a result of these secondary flows, heat
transfer is enhanced. Figure 9 reaffirms the antici-
pation that the intensification of the global heat trans-
fer is noticeable in the high-Re regime (compare the
magnitudes of the ordinates in Fig, 9). Perusal of Figs.
9(b) and (d) recaptures the earlier assertion that, in
the inlet region, Nu is higher on the inner wall than
on the outer wall, but after 0 = 15°, the trend is
reversed. It is also interesting to gauge the difference
in Nu between the inner and outer walls ; the difference
is largest near 8 = 40°. The axial variations of Nu on
the side wall and of Xfig, are comparatively mild, and
they are qualitatively similar to Nu on the outer wall.

Inan effort to portray the local heat transfer charac-
teristics, the peripheral profiles of the local Nu in the
developing flow region are mapped in Fig. 10. The

local Nu is evaluated,
5_T
a?’l wall’

In general, peripheral variations of Nu are more pro-
nounced at high Reynolds numbers, as expected. In
the low- Re regime (see Figs. 10(a) and (c)), the profiles
of local Nu on the inner and outer walls bulge toward
the symmetry plane. On the side wall, the local Nu

1

Nu=—7 7,
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tends to be large near 8 = (° and tends to decrease
stightly with the downstream axial distance.

The local Nu maps display more complex patterns
in the high-Re regime (see Figs. 10(b) and (d)). The
overall shapes of these plots are consistent with the
physical descriptions of the flow and thermal fields
that were offered earlier. The local-Nu profiles con-
tained in Fig. 10(d) at 8 = 90° are in close agreement
with the results of ref. [13]; no precision comparisons
were attempted since the data of ref. [13] were given
for the plane at & = 87° only.

5. CONCLUSIONS

Extensive and systematically-organized numerical
results of flow and heat transfer properties have been
obtained for a developing flow in a 90°-curved square
duct. The fully elliptic three-dimensional Navier—
Stokes equations have been solved.

The computed flow field is consistent with the avail-
able data in the literature. The flow characteristics in
the low- and high-Re regimes are depicted in detail.
At high Re, a zone of reverse flow is present near the
corner of outer and side walls; the adverse pressure
gradient is appreciable in this zone.

Details of the temperature field and the associated
heat transfer were analyzed and appropriate physical
explanations were offered. In the high-Re regime, the
axial variations of the Nusselt numbers, both aver-
aged and local, exhibit interesting behavior. In the
duct inlet region, convective heat transfer is higher on
the inner wall than on the outer wall. However, at
intermediate and far downstream locations, heat
transfer is more effective on the outer wall. It is impor-
tant to note that heat transfer is much reduced in the
zone of reverse flow, which occurs near the inlet outer
wall-side wall corner area.
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TRANSFERT THERMIQUE CONVECTIF DANS LA REGION D’ETABLISSEMENT
D’ECOULEMENT DANS UN CANAL QUARRE A FORTE COURBURE

Résumé—On étudie numériquement les caractéristiques de vitesse et de convection thermique dans un
écoulement laminaire dans un conduit carré courbé a 90°, avec parties rectilignes a ’entrée et & la sortic.
Les équations elliptiques, tridimensionnelles, permanentes de fluide incompressible selon Navier-Stokes
sont résolues numériquement sur des larges domaines de nombre de Reynolds Re (et de Dean en cor-
respondance). Un systéme de coordonnées lié au corps est utilisé. On adopte deux conditions aux limites
thermiques: température pariétale constante, densité de flux constant. Les résultats numériques sont
cohérents avec les données disponibles sur le champ d’écoulement. Des détails sur le champ de température
sont donnés ainsi que sur le nombre de Nusselt dans la région courbe. Au voisinage de I'entrée de la
région courbe, le transfert thermique est plus grand sur la paroi interne 4 cause d’écoulements locaux
accélérés prés d’elle. Néanmoins, plus en aval, le transfert est plus grand sur la paroi extérieure du fait de
la force centrifuge. Quand le nombre de Reynolds augmente, une région de renversement d’écoulement
apparait dans le coin entre les parois externes et latérales prés de U'entrée du coude. Le transfert thermique
est diminué dans cette région. Les résultats illustrent clairement les variations du nombre de Reynolds a
la fois sur la périphérie et dans le sens de I'écoulement principal.

KONVEKTIVER WARMEUBERGANG IN DER EINLAUFZONE EINES
QUADRATISCHEN KANALS MIT EINER STARKEN KRUMMUNG

Zusammenfassung—Das Verhalten von Geschwindigkeit und konvektivem Wirmeiibergang bei laminarer
Stromung in der Einlaufzone eines quadratischen Kanals mit einer 90°-K riimmung wird umfassend numer-
isch untersucht. An den Kanal sind gerade EinlaB- und AuslaBkanile angeschlossen. Die vorstindigen
elliptischen dreidimensionalen, stationdren Navier-Stokes Gleichungen fiir inkompressible Strémung
werden numerisch in einem weiten Bereich der Reynolds-Zahl Re (und der korrespondierenden Dean-
Zahl) gelost. Dabei wird ein korperangepaBtes Koordinatensystem verwendet. Im Bereich der Kriimmung
werden zwei thermische Randbedingungen angenommen: konstante Wandtemperatur und konstante
Wirmestromdichte. Die numerischen Ergebnisse sind mit verfiigbaren Daten fiir das Strémungsfeld kon-
sistent. Die Einzelheiten des Temperaturfeldes, sowie die Nusselt-Zahl in der gekrimmten Region werden
dargestellt. Der Einflul der Reynolds-Zahl auf den lokalen Warmeiibergang an verschiedenen Stellen des
Stromungsfeldes wird untersucht. Die Ubereinstimmung der thermischen Randbedingungen im Bereich
der Kriimmung wird gepriift. In der Umgebung des Eingangs der gekrimmten Region ist der Wir-
melibergang an der inneren Wand aufgrund von lokalen Beschleunigungsstromungen stérker. Der Wiir-
meiibergang wird jedoch weiter stromabwirts an der duBeren Wand intensiver, da das Maximum des
Hauptstroms durch die Zentrifugalkraft zur 4uBeren Wand verschoben wird. Mit zunehmender Reynolds-
Zahl erscheint in der Eckregion zwischen den duBeren und den Seitenwinden in der Néhe des Eingangs
zur Krimmung ein Gebiet der Riickstromung. Der Wiarmeiibergang in dieser Gegend ist vermindert. Die
vorliegenden berechneten Ergebnisse zeigen klar die Verdnderungen der Nusselt-Zah! in Umfangs- und in
Stromungsrichtung.

KOHBEKTHBHbBIN TEIUIONEPEHOC HA YUYACTKE PA3BHUBAIOUMIEIOCS TEUEHUSA B
CUJIBHO U30THYTOM KAHAJIE KBAAPATHOI'O CEYEHHSA

Annoramms—YHCIIEHHO BCCIENYIOTCS CKOPOCTh H XapaKTEPACTHKH KOHBEKTHBHOIO TEILIONEPEHOCA IPH
Pa3BHBANOLIEMCA JIAMEHAPHOM TEYEHHWH B KaHaJe XBaJPaTHOTo cedeHHA ¢ H3rubom B 90°. K Bxonmy u
BBIXOAYy H3 KaHaja MPHMBIKAIOT 10 KacaTeJbHOM mpsAMble y4yacTKH. YHCIEHHO PelHaloTCA IOJHOCTLIO
3JUIMNTHYECKHE TPEXMEPHBIE CTaMOHapHbic ypaBHenns Hapbe—CToKca 18 HECKHMaEMON XHAKOCTH B
IUMPOKKX MHTEPBAIaX W3MEHEHUs 4yuciaa PefiHonmbliica Re (1 cooTBeTcTBytomero yncna [duna). Hcnons-
3yeTCs CHCTéMa KOOPIMHAT, CBA3aHHAA C 00TeKaeMbIM TeaoM. Ha nm3rube NpMHATEI ABa BHIA TEILIOBBIX
IPaHUYHBIX YCJIOBHH: C NMOCTOSHHOW TEMIICPATYPOH CTCHKM H C MOCTOSHHBIM TEIUIOBRIM MOTOKOM Ha
cTenke. UnCNeHHbIE Pe3y/IbTATHI COIJIACYIOTCA C HMEIOIHMHCH JaHHBIMM IS 1o Teyenus. Ipencras-
JIEHBI XapaKTEpPHCTHKH TeMmmepaTypHoro mois M uucno HyccenbTa Ha ydactxe uarmba. Hccnenyercs
BUSHHE 3HA4cHHs Re Ha JOKaMbHBI TEILUIONEPEHOC B pa3/IMYHbIX 061acTax mojs TeueHHs. Paccmatpn-
BAETCS TAKXKeE BIUSHHE TEILUIOBOrO I'PAHHYHOrO yCIoBHA Ha M3ruGe. B okpecTHOCTH Bxoma B y4acTOK
n3ru6a TemonepeHoc Gosee HHTEMCHBEH HA BHYTPCHHEH CTCHKE H3-32 HAJIHYHSA YCKOPSIOUIMXCS TEUCHUH.
OaHAaKo ¢ PacCTOSHHEM BHH3 MO MOTOKY TEIUIONEPEHOC MPOKUCXOOUT HHTCHCHBHEH HA BHCLIHEH CTEHKE,
NOCKOJIBKY MAaKCHMYM OCHOBHOFO MOTOKAa CMeIaeTcd K BHeluHeil M 60koBOil cTeHkaM Hox AcHCTBHEM
nentpobexupix cui. ITo mMepe yBenmyeHus udcna PeiiHonbica B yrioBodf o6nacTn Mexmy BHElHel u
60k0BOH cTeHKaMH Y Bxola B H3rub Bo3HMxaeT ydacTok o6paTHOoro teyeHus. [Tonydennsie pe3ynbraThl
pacyeTOB HArJAQHO MOKA3LIBAIOT H3MeHeHHs yncen HyccenbTra kak Ha nepudepHH, TaK M B HANPABJICHHH
TeYeHUs.



